Assessment

On the <u>VLE Module Assessment link</u>

(ii) A report of the summer term Experimental Design Practical including an Appendix with R script.

- logical folder structure
- script, any accessory functions and the data itself.
- script should be well-commented, well-organised and follow good practice in the use of spacing, indentation, and variable naming.
- include all the code required to reproduce data import and formatting as well as the summary information, analyses, and figures in your report.
- Examples of well-formatted scripts are given at the end of most workshops.

17C Laboratory & Professional Skills: Data Analysis

Laboratory & Professional skills for Bioscientists Term 2: Data Analysis in R

Two sample tests: two-sample *t*-test, two-sample Wilcoxon

Practical: one and two sample tests examples, different data formats ggplot.

Summary

- Tests for one-, two-, and paired-samples (ttests and non-parametric equivalents)
- Today
 - two-sample *t*-test for independent samples
 - Wilcoxon for one- and two-samples when *t*-test assumptions are not met
- Choosing appropriate tests: type of question, type of data
- Second of two lectures; single workshop

Overview of topics

Week	Торіс	
2	Introduction. Logic of hypothesis testing	
3	Hypothesis testing, variable types	Foundation
•		
4	Chi-squared tests	Hypothesis testing
5	The normal distribution, summary statistics and CI	Estimation
6 and 7	One- and two-sample tests (2 lectures)	
8	One-way ANOVA and Kruskal-Wallis	Hypothesis testing
9	Two-way ANOVA incl understanding the interaction	
10	Correlation and regression	

Lecture 2	1. Estimation
	– what is the mean of the population?
	2. Hypotheses testing
	e.g., is there a difference between 2 means (<i>t</i> -test)
	e.g., is the expected number of observations what
	we expect (chi-squared test)

Learning objectives

Also in previous lecture By actively following the lecture and practical and carrying out the independent study the successful student will be able to:

- Explain dependent and independent samples (MLO 2)
- Select, appropriately, t-tests and their nonparametric equivalents (MLO 2)
- Apply, interpret and evaluate the legitimacy of the tests in R (MLO 3 and 4)
- Summarise and illustrate with appropriate figures test results scientifically (MLO 3 and 4)

Types of *t*-test

- Also in previous lecture Also in previous lecture T Also in previous lecture T
 - Compares the mean of sample to a particular value (compares the response to a reference)
 - Includes paired-sample test for dependent samples (i.e., two linked measures)
 - 2. Two-sample
 - Compares two (independent) means to each other

Paired-sample *t*-tests example

Same

student

Is there a difference between the maths and stats marks of 10 students?

The one sample is the difference between the pairs of values

00		E Filter		
2	•	subject =	mark	
×	1	maths	97	
	2	maths	58	
	3	maths	65	
	4	maths	65	
	5	maths	80	
	6	maths	48	
	7	maths	85	
	8	maths	63	
	9	maths	58	
1	0	maths	98	
1	1	stats	89	
1	2	stats	49	
1	3	stats	68	
1	4	stats	70	
1	5	stats	74	
1	6	stats	30	
1	7	stats	78	
1	8	stats	69	
1	9	stats	40	
2	0	stats	85	

7

Two-sample *t*-tests

- Is there a difference between two independent means
 - Independent values in one group not related to values in the other group
- Example: is there a significant difference between the masses of male and female chaffinches?

Also in previous lecture
$$t$$
-tests
• Standard formula for all t-tests
 $t = \frac{statistic - hypothesised value}{s.e. of statistic}$
NEW! • $t_{[d.f]} = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{s.e. of(\bar{x}_1 - \bar{x}_2)}$

To aid understanding, not for remembering

• d.f.= $n_1 + n_2 - 2$

All *t*-tests assume the "residuals" are normally distributed and have homogeneity of variance

A residual is the difference between the predicted and observed value

Predicted value is the mean / group mean

Also in previous Checking Assumptions

- Common sense
 - response should be continuous
 - No/few repeats
- Plot the residuals
- Using a test in R

When data are not normally distributed

- Transform (not really covered)
 - E.g. Log to remove skew, arcsin squareroot on proportions
- Use a non-parametric test (covered)
 - Fewer assumptions
 - Generally less powerful

t-tests Two-sample *t*-test example

• Example: is there a significant difference between the masses of male and female chaffinches?

t-tests Two-sample t-test example

	a 7	Filter
	mass 🌣	sex
- 1	1 <mark>8.3</mark>	females
2	22.1	females
3	22.4	females
4	18.5	females
5	22.2	females
6	19.3	females
7	17.8	females
8	20.2	females
9	22.1	females
10	16.6	females
11	20.7	females
12	1 <mark>8</mark> .7	females
13	22.6	females
14	21.5	females
15	21.7	females
16	19.9	females
17	23.1	females
18	17.8	females
19	19.5	females
20	24.6	females
21	22.7	males
22	20.6	males
23	25.4	males

NEW!

chaff <- read.table("../data/chaff.txt", header = T)</pre>

Note: these data are 'tidy'

All the responses in one column with other variables indicating the group

Organise your data this way

Tidy data

- Extension of Previous lect Each variable should be in one column.
 - Each different observation of that variable should be in a different row.
 - There should be one table for each "kind" of variable.
 - If you have multiple tables, they should include a column in the table that allows them to be linked.

Independent study: Wickham, H (2013). Tidy Data. Journal of Statistical Software. https://www.jstatsoft.org/article/view/v059i10

Two-sample *t*-test example

Plot your data: roughly – perhaps one of these...

16

Two-sample *t*-test example

Plot your data: don't overthink. Just gives you idea of what to expect and helps identify issues (missing data, outliers etc)

Two-sample *t*-test example

Summarise the data:

```
chaffsum <- chaff %>%
  group_by(sex) %>%
  summarise(mean = mean(mass),
      std = sd(mass),
      n = length(mass),
      se = std/sqrt(n))
```

chaffsum

#	A tibble	e: 2 x	5		
	sex	mean	std	n	se
	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>
1	females	20.5	2.14	20	0.478
2	males	22.3	2.15	20	0.481

Two-sample *t*-test example

Run the *t*-test

```
t.test(data = chaff,
mass ~ sex,
paired = F,
var.equal = T)
```

```
data: mass by sex
t = -2.6471, df = 38, p-value = 0.01175
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.167734 -0.422266
sample estimates:
mean in group females mean in group males
20.480 22.275
```

Two-sample *t*-test example

Checking the assumptions: calculate the residuals – the difference between predicted and observed (i.e., group mean and value)

```
# add the group means to the data
chaff <- merge(chaff, chaffsum[,1:2], by = "sex")
# add the residuals
chaff <- chaff %>%
    mutate(residual = mass - mean)
```

Two-sample *t*-test example

Checking the assumptions: <u>normally</u> and homogenously distributed residuals

```
shapiro.test(chaff$residual)
    Shapiro-Wilk normality test
data: chaff$residual
W = 0.98046, p-value = 0.7067
```

Two-sample *t*-test example

Checking the assumptions: normally and <u>homogenously</u> distributed residuals

t-tests Extension of previous level to test example

Reporting the result: "significance of effect, direction of effect, magnitude of effect"

Male chaffinches ($\bar{x} \pm s.e$: 22.48 \pm 0.48) are significantly heavier than females (20.28 \pm 0.48) (t = 2.65; d.f. = 38; p =0.012). See figure 1.

t-tests **Two-sample** *t*-test: figures

Supports your claim:

- Show the data (all if possible)
- Show the 'model' (the predicted values i.e., means and error bars)
- Say what kind of error bars
- Full but concise figure legends

Figure 1. Mean mass of male and female chaffinches. Error bars are means +/- one standard error.

Figure 1. Graph to show mass of male and female chaffinches. Error bars are means +/- one standard error. When the *t*-test assumptions are not met: non- parametric tests

- Non-parametric tests make fewer assumptions
- Based on the ranks rather than the actual data

 Null hypotheses are about the *mean* rank (not the mean)

Non-parametric tests t-test equivalents

i,.e., the type of question is the same but the response variable is not normally distributed

- one sample *t*-test and paired-sample *t*-test: the one-sample Wilcoxon
- Two-sample *t*-test: two-sample Wilcoxon aka Mann-Whitney

Non-parametric tests

two-sample Wilcoxon (Mann-Whitney)

Example: comparing the number of leaves on 8 mutant and 7 wild type plants (small samples, counts)

Ontit	led1* ×	plants ×
(D) (1 V	Filter
*	leaves	type =
1	3	mutant
2	5	mutant
3	6	mutant
4	7	mutant
5	3	mutant
6	4	mutant
7	5	mutant
8	8	mutant
9	8	wild
10	9	wild
11	6	wild
12	7	wild
13	8	wild
14	9	wild
15	10	wild

Non-parametric tests two-sample Wilcoxon (M-W): example

Carrying out the test two-sample Wilcoxon

Non-parametric tests two-sample Wilcoxon (M-W): example

Reporting the result: "significance of effect, direction of effect, magnitude of effect"

There are significantly more leaves on wild-type (median = 8) than mutant (median = 5) plants (Mann-Whitney: W=5, $n_1=7$, $n_2=8$, p = 0.009)

Always refer to figure in the text

Learning objectives for the week

By attending the lectures and practical the successful student will be able to

- Explain dependent and independent samples (MLO 2)
- Select, appropriately, *t*-tests and their nonparametric equivalents (MLO 2)
- Apply, interpret and evaluate the legitimacy of the tests in R (MLO 3 and 4)
- Summarise and illustrate with appropriate R figures test results scientifically (MLO 3 and 4)